JOM 23077

Umsetzungen von Metallorganylen mit dem capto-dativ substituierten Ethylen $H_2C=C(CN)(S^tButyl)$

J. Herbig, J. Köhler, B. Nuber, H.G. Stammler und M.L. Ziegler[†]

Anorg. Chem. Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg (Deutschland) (Eingegangen den 11. Juni 1992)

Abstract

The olefin H₂C=C(CN)(S¹Bu) (A) has one donor- and one acceptor substituent in a *geminal* position. Because such a compound is expected to undergo multiple reactions, A was reacted with some organometallic substrates. The reaction of A with [CpFe(CO)₂]₂ leads to the sulphur bridged cluster (Cp)₂Fe₂[μ_2,η^2 -S=C(CN)CH₂(CH₃)C=S] (1). With (Mes)Cr(CO)₂(THF) A reacts at 0°C to give the three isomeric compounds (Mes)Cr(CO)₂[η^2 -H₂C=C(CN)(S¹Butyl)] (2), (Mes)Cr(CO)₂[S(¹Bu)C(CN)=CH₂] 2a and (Mes)Cr(CO)₂[NC-C(S¹Bu)=CH₂] (2b). By thermolysis of (C₅Me₅)₂Co₂(μ -CO)₂ or CpRh(CO)₂ with A the complexes (C₅Me₅)Co(CO)[η^2 -S=C(CN)(CH₂-¹Butyl) (3) and Cp₂Rh₂[μ_2,η^1,η^2 -CH=C(CN)](μ_2 -S¹Butyl) (4) were obtained. All newly synthesized compounds have been analysed and characterised by the usual spectroscopic methods. X-ray diffraction studies have been done of compounds 1-4.

Zusammenfassung

Das Olefin $H_2C=C(CN)(S^1Bu)$ (A) trägt einen Donor- und einen Akzeptorsubstituenten in geminaler Position. Da einen solche Verbindung vielfältige Reaktionen erwarten läßt, wurde A mit einer Reihe metallorganischer Substrate umgesetzt. Die Reaktion von A mit $[CpFe(CO)_2]_2$ führt zu dem schwefelverbrückten Cluster $(Cp)_2Fe_2[\mu_2,\eta^2-S=C(CN)CH_2(CH_3)C=S]$ (1). Mit $(Mes)Cr(CO)_2(THF)$ reagiert A schon bei 0°C zu den drei isomeren Verbindungen $(Mes)Cr(CO)_2[\eta^2-H_2C=C(CN)(S^1Buty)]$ (2), $(Mes)Cr(CO)_2[S(^1Bu)-C(CN)=CH_2]$ (2a) und $(Mes)Cr(CO)_2[NC-C(S^1Bu)=CH_2]$ (2b). Bei der Thermolyse von $(C_5Me_5)_2Co_2(\mu-CO)_2$ oder $CpRh(CO)_2$ mit a ließen sich die Komplexe $(C_5Me_5)Co(CO)[\eta^2-S=C(CN)(CH_2-^1Buty)]$ 3 und $Cp_2Rh_2[\mu_2,\eta^1,\eta^2-CH=C(CN)](\mu_2-S^1Buty)$ 4 erhalten. Alle neu synthetisierten Verbindungen wurden mit den gängigen spektroskopischen Methoden analysiert und charackterisiert. Von den Verbindungen 1-4 wurden Röntgenstrukturanalysen durchgeführt.

1. Einleitung

Das Interesse an capto-dativ substituierten Olefinen [1] mit einer Donor- und Akzeptorfunktion an *gemi*naler Position ist in jüngster Zeit stark angewachsen.

So erwiesen sie sich aufgrund ihres radikophilen Charakters [2] als ausgezeichnete Partner bei Additionsreaktionen [2,3] sowie als Radikalfänger. Anderseits sind sie durch ihre funktionellen Gruppen bestens geeignete Ausgangsverbindungen für sonst schwer zugängliche Produkte [4]. Wir berichten hier über Umsetzungen des capto-dativ substituierten Olefins $H_2C=C(CN)(S^tButyl)$ A mit einigen Metallorganylen.

2. Diskussion der Ergebnisse

Durch Reaktion des capto-dativ substituierten Olefins A (Abb. 1) mit metallorganischen Verbindungen wollten wir versuchen höhere schwefelverbrückte Cluster aufzubauen.

Bei der Reaktion von A mit $[CpFe(CO)_2]_2$ in siedendem Toluol ließ sich das rot braune Produkt 1 in 29% Ausbeute isolieren (Schema 1).

Der Cluster 1 setzt sich aus einer CpFe-FeCp Einheit und einem über beide CS-Einheiten koordinierten $CH_3-(C=S)-CH_2-(C=S)-CN-Liganden zusammen.$

Correspondence to: Prof. Dr. G. Huttner, Anorg. Chem. Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 6900 Heidelberg, Deutschland.

Abb. 1. Das capto-dativ substituierte Alken A.

Schema 1. Umsetzung von A mit $[CpFe(CO)_2]_2$.

Abb. 2. Festkörperstruktur von 1 (siehe Tab. 1, Tab. 3).

Das Grundgerüst dieser Struktur bildet eine verzerrte Prismaneinheit aus den Atomen Fe(1)-S(1)-C(14)-Fe(2)-S(2)-C(12) (siehe Abb. 2). Die beiden Dreiecksflächen Fe(1)-S(1)-C(14) und Fe(2)-S(2)-C(12) ste-

Schema 2. Bildung der Verbindungen 2, 2a, und 2b.

TABELLE 1. Ausgewählte Bindungsabstände (pm) und Winkel (°) von 1

Abstände		Winkel	
$\overline{M_{Cp1}-Fe(1)^a}$	170.9(5)	M_{Cp1} -Fe(1)-Fe(2)- M_{Cp2}	6.0(1)
M_{Cp2} -Fe(2)	171.4(4)	Fe(1) - S(1) - Fe(2)	75.2(1)
Fe(1)-Fe(2)	265.3(1)	Fe(1)-S(2)-Fe(2)	74.7(1)
Fe(1)-S(1)	218.7(1)	Fe(1)-S(1)-C(14)	60.5(1)
Fe(1)-S(2)	218.4(1)	Fe(2)-S(2)-C(12)	61.4(1)
Fe(2)-S(1)	216.2(1)	Fe(2)-S(1)-C(14)	97.4(1)
Fe(2)-S(2)	218.8(1)	Fe(1)-S(2)-C(12)	98.5(1)
Fe(1)-C(14)	203.4(4)	Fe(1)-C(14)-S(1)	69.7(1)
Fe(2)-C(12)	205.4(3)	Fe(2)-C(12)-S(2)	69.3(1)
C(14)-S(1)	177.9(3)	S(1)-Fe(1)-S(2)	97.9(1)
C(12)-S(2)	177.0(4)	S(1)-Fe(2)-S(2)	98.5(1)
Cp1-Cp2	69.2(1)		

^a M_{CD} = Zentrum des Cp-Ringes.

hen parallel zueinander. Die Bindungslängen Fe(1)-C(14)- und Fe(2)-C(12) zeigen mit 203.0(4) pm bzw. 205.4(3) pm) (Tab. 1) für solche Fe-C-S-Dreiringe typische Werte [5]. Die Bindungsabstände zwischen C(14)-S(1) (177.9(3) pm) und C(12)-S(2) (177.0(4) pm) sind nahezu identisch und gegenüber einer C-S-Einfachbindung (181.9 pm [6]) geringfügig verkürzt. Die Grundfläche des Prismas bildet der Bicyclus Fe(1)-S(1)-Fe(2)-S(2). Alle Fe-S Bindungsabstände (zwischen 216.2(1) und 218.7(1) pm) liegen ebenso wie der Fe(1)-Fe(2) Abstand (265.3(1) pm) im Bereich einer Einfachbindung [7]. Der Abstand S(1)-S(2) beträgt 329.8 pm, liegt eindeutig im nichtbindenden Bereich und ist signifikant größer als in anderen vergleichbaren Fe₂S₂-Systemen [8]. Die zu einer Kette verknüpften Atome C(11)-C(12)-C(13)-C(14)-C(15)-N(1) liegen in einer Ebene (max. Abweichung von der besten Ebene: 5.9 pm). Diese Ebene steht senkrecht zu den beiden Dreiecksflächen Fe(1)-S(1)-C(14) und Fe(2)-S(2)-C(12). Die Cp-Ringe stehen in *cis*-Stellung und schließen einem Ebenenwinkel von 69.9° ein.

Die Bildung des koordinierten $CH_3-(C=S)-CH_2-(C=S)-CN-Liganden in 1 läßt unter den hier ange$ wandten drastischen Reaktionsbedingungen radikalische Zwischenstufen möglich erscheinen. Um mehrEinsicht über die Reaktionweise des capto-dativ substi-

tuierten Olefins A mit Metallorganylen zu gewinnen, wurden weitere Reaktionen durchgeführt.

Der THF-Komplex $\text{MesCr(CO)}_2(\text{THF})$ (Mes = Mesitylen) addiert spontan bei Temperaturen über 0°C das Olefin A, wobei sich die drei isomeren Verbindungen 2, 2a und 2b als Produkte isolieren lassen (Schema 2). Die gleichen Isomere konnten auch bei der Cothermolyse von $\text{Mes}_2\text{Cr}_2(\mu\text{-CO})_3$ mit A in Toluol bei 70°C mit erheblich niedrigeren Ausbeuten erhalten werden.

Dieses Ergebnis verdeutlicht eindrucksvoll den multifunktionalen Charakter von A: Mit Koordination über das Schwefelatom, über den Nitrilsubstituenten oder über die C=C-Doppelbindung werden alle drei denkbaren Koordinationsmöglichkeiten von A realisiert. Lediglich von Verbindung 2 konnten für eine Röntgenstrukturanalyse (siehe Abb. 3, Tab. 2, Tab. 3) geeignete Einkristalle erhalten werden. Der in Schema 2 skizzierte Bau von 2a und 2b kann jedoch aufgrund der spektroskopischen und analytischen Daten (siehe Tab. 4, Tab. 5) als gesichert angenommen werden.

Das Chrom-Atom Cr(1) in 2 bildet zusammen mit den beiden olefinischen C-Atomen C(12) und C(13) ein spitzwinkliges Dreieck. Der Abstand zwischen C(12) und C(13) (142.3(5) pm, Tab. 2) liegt zwischen einer C-C Einfachbindung (154 pm) und einer C=C Doppelbindung (134 pm) [9]. Eine solche Geometrie läßt eine Beschreibung plausibel erscheinen, die 2 als MesCr-(CO)₂-Komplexfragment behandelt, das side-on an die C=C-Doppelbindung von A koordiniert ist. Die beobachtete Aufweitung der C=C-Doppelbindung würde in einer solchen Sichtweise aus der großen π -Akzeptorstärke des capto-dativ substituierten Olefins resultieren, wodurch Elektronendichte in die antibindenden Molekülorbitale des C=C-Doppelbindungssystems übertragen wird. Der für ein side-on koordiniertes Alken erwartete Planaritätsverlust des Olefins kommt in der von 360° verschiedenen Winkelsumme der drei Winkel an C(13) von etwa 355° zum Ausdruck.

Bei der Umsetzung von $[Cp^*Co(CO)]_2$ $(Cp^* =$

TABELLE 2. Ausgewählte Bindungsabstände (pm) und Winkel (°) von 2

Abstände		Winkel	
M_{Mes} -Cr(1) ^a	178.6(4)	M_{Mex} - Cr(1) - C(10)	121.7(2)
Cr(1) - C(10)	184.4(4)	$M_{Mes} - Cr(1) - C(11)$	123.9(2)
Cr(1)-C(11)	182.8(4)	$M_{Mes} - Cr(1) - C(12)$	118.3(2)
Cr(1)-C(12)	216.7(3)	$M_{Mes} - Cr(1) - C(13)$	135.4(2)
Cr(1)-C(13)	222.1(3)	M_{Mes} -Cr(1)-C(12)-C(13)	128.7(4)
C(12)-C(13)	142.3(5)	M_{Mes} -Cr(1)-C(13)-C(12)	78.2(3)
C(13)-S(1)	178.1(3)	mes	
S(1)-C(15)	186.1(3)		

^a M_{Mes} = Zentrum des Mesitylenringes.

Abb. 3. Festkörperstruktur von 2 (siehe Tab. 2, Tab. 3).

 C_5Me_5) mit A in Toluol ließ sich lediglich der monomere Kobaltkomplex 3 (Schema 3) isolieren.

Bei dieser Umsetzung beobachtet man eine Wanderung der tert-Butylgruppe in A vom Schwefelatom auf die CH₂-Gruppe. Das dabei entstehende Thioketon stabilisiert sich under Addition an das 16 Elektronenfragment Cp*Co(CO) zum Cobaltathiiran 3.

Die Röntgenstrukturanalyse (Abb. 4, Tab. 3, Tab. 6) ergibt als auffälliges Strukturmerkmal von 3 einen aus den Atomen Co(1)–C(2)–S(1) bestehenden Dreiring mit den Winkeln Co(1)–C(2)–S(1) 71.3°, S(1)–Co(1)– C(2) 48.1° und Co(1)–C(2) 60.6°, der sich formal durch die side-on Koordination des Thioketons an das Co-Zentralatom bildet. Die Bildung eines solchen Cyclus wurde auch bei der Bindung des Heteroallens CS₂ an die 16 VE-Spezies CpCo(PMe₃) [10] beobachtet. Der C–S Bindungsabstand in 3 (174.2(11) pm) sowie in CpCo(PMe₃)(η^2 -CS₂) (168.0(1) pm) ist gegenüber einer freien C=S-Doppelbindung (155.4 pm) [11] stark aufgeweitet. Dies läßt darauf schließen, daß bei 3 antibindende Molekülorbitale der C=S-Einheit in erheblichem Maß besetzt werden.

Ein völlig anderes Reaktionsverhalten zeigt A bei thermisch geführter Umsetzung mit $CpRh(CO)_2$ (Schema 4) in Toluol. Nach chromatographischer Aufarbeitung an einer Kieselgelsäule erhält man den tiefvioletten dimeren Rhodiumvinylkomplex 4.

Offensichtlich werden durch Spaltung der C-S-Bindung in A ein $H_2C=C-CN$ - und ein 'Butyl-S-Fragment gebildet. Abbildung 5 zeigt die Ergebnisse einer Röntgenstrukturanalyse von 4. Die Vinyleinheit [C(11) = C(12)] und die Rhodiumatome Rh(1) und Rh(2) bilden ein bicyclisches System, dessen Ebenen einem Winkel von 133.1° (Tab. 7) einschließen. Der Rh-Rh Abstand (265.6(1) pm) entspricht einer Rh-Rh-

		1	2	3	4
Summenformel		$C_{15}H_{15}Fe_2NS_2$	C ₁₈ H ₂₃ CrNO ₂ S	C18H26CoNOS	C ₁₇ H ₂₁ Rh ₂ NS
Molmasse		384.97	369.24	363.17	477.05
Farbe		braunschwarz	rot	dunkelrot,	dunkelviolett,
Habitus		prismatisch	Tafeln	unregelmäßig	parallelepipedisch
Kristallsystem		triklin	monoklin	monoklin	monoklin
F(000)		442	1552	768	944
Raumgruppe		P 1, Nr. 2	C2/c, Nr. 15	$P2_1/a$, Nr. 14	$P2_1/c$, Nr. 14
Gitterdaten (pm, °)	а	842.6(2)	3156.0(7)	1053.4(5)	93.64(3)
	b	1011.1(3)	860.5(2)	1380(3)	152.75(4)
	с	1071.1(3)	1450.0(4)	1317(4)	126.12(3)
	α	87.57(2)	90	90	90
	β	77.40(2)	108.99(2)	100.52(3)	106.62(3)
	γ	88.83(2)	90	90	90
Volumen $(10^6 \times \text{pm}^3)$		889.77	3733.78	1883.6	1728.6
Besetzungszahl pro EZ		2	8	4	4
$\rho_{\rm Röntg} ({\rm g}{\rm cm}^{-3})$		1.61	1.31	1.28	1.83
Vermessener Bereic	:h	$3 < 2\theta < 57^{\circ}$	$3 < 2\theta < 57^{\circ}$	$3 < 2\theta < 50^{\circ}$	$3 < 2\theta < 57.5^{\circ}$
h, k, l (min/max)		0/12, -14/14, -15/15	0/43, 0/12, -20/20	-13/13, 0/16, 0/16	0/13, 0/21, -18/18
Mögl. Reflexe		4761	5268, 4879 unique	3643	4910
Unabh. Refl. $I > 2.5$	δσ(I)	3568	3460	1065	3849
$R_{\text{merge}}(\%)$		4.6	3.5	1.4	2.9
Kristallgröße (mm ³)	1	0.28 imes 0.40 imes 0.57	0.23 imes 0.57 imes 0.68	0.1 imes 0.2 imes 0.4	0.4 imes 0.4 imes 0.6
Zahl der LS-Parame	eter	227	209	133	191
Mol. Absorptkoeff	$\mu (\rm mm^{-1})$	1.85	0.71	1.02	1.99
Restelektrdichte (eÅ ^{−3})	-0.30/0.35 (min/max)	-0.35/0.42 (min/max)	-0.4/0.5 (min/max)	-0.47/0.55 (min/max)
R		3.6%	5.5%	5.6%	31.%
R _w		3.3%	5.0%	4.8%	2.8%
GÖOF		2.58	2.85	1.96	2.89
shift/esd (max)		0.003	0.115	0.038/0.308	0.014
Gerät, Methode		Syntex R3, ω	Syntex R3, ω	Aed II, $\theta - 2\theta$	Syntex R3, ω
Strahlung		ΜοΚα	Μο Κα	Μο Κα	Μο Κα

TABELLE 3. Röntgenographische Daten ^a von 1-4

^a Weitere Einzelheiten über Strukturdaten können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56413, der Autoren sowie des Zeitschriftenzitats angefordert werden.

	$IR(cm^{-1})$		¹ H-, (¹³ C-)NMR (ppm)			
	$\nu(CN)$	ν(CO)	L ^a	^t Bu	CH ₂	CH ₃
1	2185	_	4.63s, 5H; (83.64)	<u></u>	1.79s; (22.62)	1.60s
			4.58s, 5H; (82.45)	-	_	(14.06)
2	2192	1920	5.05s, 3H; (135.70)	1.40s, 9H	2.94d, 1H; 2.51d, 1H	-
		1863	2.26s, 9H; (124.94)	(28.94; 19.23)	$^{2}J = 2.32$ Hz; (97.20)	-
2a	2176	1871	4.31s, 3H	1.40s, 4H	6.03s, 1H	-
		1809	2.07s, 9H	-	5.95s, 1H	-
2b	1813	1926	5.12s, 3H	1.33s, 9H	4.29s, 1H	-
		1866	2.26s, 9H	-	4.21s, 1H	-
3	2179	2004	1.81s, 15H	1.04s, 9H	2.22d, 1H; 1.20d, 1H	-
			(98.77; 30.01)	(29.86; 8.93)	$^{2}J = 14.1 \text{ Hz} (33.48)$	-
4 ·	2177	_	5.46s, 5H; 5.39s, 5H	1.29s, 9H	3.97d, 1H	-
-	/		(85.88d, J(Rh-C) = 5.2 Hz)	(45.64; 33.33)	1.70s, 1H	_
			(84.56d, J(Rh-C) = 5.5 Hz)	. ,,	(58.35, J(Rh-C) = 11.0 Hz)	_
			······			

TABELLE 4. Spektroskopische Daten der Verbindungen 1, 2, 2a, 2b, 3, und 4

^a L = Cyclopentadienyl (Cp), Pentamethyl-Cp, Ethylmethyl-Cp und Mesitylen.

Schema 3. Bildung von 3.

Abb. 4. Festkörperstruktur von 3 (siehe Tab. 3, Tab. 6).

TABELLE 6. Ausgewählte Bindungsabstände (pm) und Winkel (°) von 3

Abstände		Winkel	
$\overline{M_{Cp}-Co(1)^a}$	171.9(10)	M_{Cp} -Co(1)-C(2)	136.8(4)
$C_{0}(1) - C(2)$	203.9(10)	M_{Cn}^{-r} -Co(1)-S(1)	133.8(3)
Co(1)-C(8)	178.3(13)	$M_{Cn}^{}-Co(1)-C(8)$	123.6(4)
Co(1)-S(1)	221.6(4)	$M_{Cn}^{}-Co(1)-S(1)-C(2)$	119.8(4)
S(1)-C(2)	174.2(11)	$M_{C_{0}}$ -Co(1)-C(2)-S(1)	113.8(4)
C(2)-C(3)	154.2(14)	CP	
C(1)-C(2)	150.0(15)		

^a M_{Cp}: Zentrum des Cp Ringes.

Einfachbindung [12]. Ebenso liegen die Bindungsabstände Rh(1)–C(11) (214.8(6) pm), Rh(1)–C(12) (210.6(5) pm) und Rh(2)–C(12) (202.5(5) pm) alle im Bereich einer Rh–C Einfachbindung [13]. Die Unterschiede in den gefundenen Rh–C-Bindungslängen lassen sich durch die σ - π -Verknüpfung der Vinylgruppe erklären, wobei die σ -Bindung zwischen Rh(2)–C(12) erwartungsgemäß am kürzesten ist. Die Bindungslänge zwischen C(12)–C(13) (139.8(6) pm) entspricht einem Bindungsgrad von 1.6 [14].

Schema 4. Unsetzung von A mit CpRh(CO)₂.

TABELLE 5. Analysendaten, FD-Massenspektren und Festpunkte von 1, 2, 2a, 2b, 3 und 4

	Elementar	analyse (%)				Molpeak (rel. Int.)	Fp. (°C)
		С	Н	N	S		
1 ^a	Ber.:	51.5	4.4	3.3	14.9	385 (100.0)	> 250 ^b
	Gef.:	50.8	4.4	3.4	15.4		
2	Ber.:	58.5	6.2	3.8	8.6	369 (5.9)	91 ^b
	Gef.:	58.0	6.3	3.8	8.4		
2a	Ber.:	58.5	6.2	3.8	8.6	369 (3.0)	> 30 ^b
	Gef.:	58.1	5.9	3.6	8.7		
2Ь	Ber.:	58.5	6.2	3.8	8.6	369 (4.8)	> 45 ^b
	Gef.:	58.3	5.8	3.5	8.2		
3	Ber.:	59.5	7.2	3.9	8.8	363 (33.9)	73-74 ^b
	Gef.:	59.4	7.6	4.0	9.0		
4	Ber.:	42.8	4.4	2.9	6.7	477 (33.8)	87-89 ^b
	Gef.:	43.0	4.0	3.1	6.6		

^a Der berechnete Wert entspricht der Zusammensetzung 1×1/2 Toluol, die durch die Ergebnisse der Röntgenstrukturanalyse belegt ist.
^b Zersetzung.

Abb. 5. Festkörperstruktur von 4 (siehe Tab. 3, Tab. 7).

Die beiden Rhodiumatome und die tert-Butylsulfidobrücke bilden zusammen ein nahezu gleichschenkliges Dreieck. Die beiden Rh-S-Abstände (230.0(1) pm) und (232.4(1) pm) entsprechen der Summe aus den Kovalenzradien beider Elemente. Die Ebenen Rh(1)-Rh(2)-S(1) und Rh(1)-Rh(2)-C(12) schließen einen Winkel von 67.7° ein. Sowohl die Vinylgruppe als auch die S-^tBu-Einheit können jeweils als 3e⁻ Donoren betrachtet werden so daß für beide Rhodiumatome die 18e-Regel erfüllt wird.

3. Experimenteller Teil

Alle Arbeiten wurden unter Luftausschluß mit gereinigtem Argon als Inertgas durchgeführt (Schlenkrohrtechnik [15]). Die Photolysereaktionen erfolgten in einer "falling-film" Tauchlampenapparatur mit Innenkühlung und Außenkühlmantel [16] unter Inertgas-

TABELLE 7. Ausgewählte Bindungsabstände (pm) und Winkel (°) von 4

Abstände		Winkel	
$\overline{M_{Cn1}-Rh(1)^a}$	185.4(3)	Rh(1)-S(1)-Rh(2)	70.1(1)
$M_{Cp2} \sim Rh(2)$	185.7(3)	Rh(1)-S(1)-C(14)	116.7(2)
Rh(1)-Rh(2)	265.6(1)	Rh(2)-S(1)-C(14)	114.7(2)
Rh(1)-S(1)	232.4(1)	Rh(1)-C(11)-C(12)	69.2(3)
Rh(2)-S(1)	230.0(1)	Rh(1)-C(12)-Rh(2)	80.0(2)
Rh(1)C(11)	214.8(6)	Rh(1)-C(12)-C(11)	72.4(3)
Rh(1)-C(12)	210.6(5)	Rh(1)-C(12)-C(13)	116.7(4)
Rh(2)-C(12)	202.5(5)	Rh(2)-C(12)-C(11)	126.1(3)
C(11)-C(12)	139.8(6)	Rh(2)-C(12)-C(13)	116.4(3)
C(12)-C(13)	144.1(7)	C(11)-C(12)-C(13)	117.3(4)
		$M_{Cp1}-Rh(1)-Rh(2)-M_{Cp2}$	4.7(3)

^a M_{Cp}: Zentrum des Cp Ringes.

bedingungen. Die Trennung der Reaktionsprodukte erfolgte säulenchromatographisch (Mitteldrucksäule der Firma Büchi (460×32 mm) mit Kühlmantel: stationäre Phase: Kieselgel 60 (0.04–0.063 mm) der Firma Merck).

Die FD-Massenspektren wurden auf dem Gerät Finnigan MAT 8200 in CH_2Cl_2 -Lösung angefertigt. Die Elementaranalysen stammen vom Mikroanalytischen Labor der Chemischen Institute der Universität Heidelberg. IR-Spektren wurden auf dem IR-Spectrometer Perkin Elmer 983G in einer KBr-Matrix gemessen. ¹H-NMR- und ¹³C-NMR-Spektren wurden auf dem Gerät Bruker WH 300, 300 MHz bzw. 90 MHz aufgenommen. Die Schmelz- bzw. Zersetzungspunkte wurden auf dem Schmelztisch der Firma H. Bock ermittelt und sind korrigiert.

3.1. Synthese von 1

In einem 250 ml Zweihalskolben mit Rückflußkühler und Inertgasanschluß gibt man zu einer Lösung von 700 mg (2 mmol) $[CpFe(CO)_2]_2$ in 150 ml Toluol 1 ml (7 mmol) 1 unter Rühren hinzu. Nach 12 Stunden Erhitzen am Rückfluß wird das Lösungsmittel im Ölpumpenvakuum entfernt. Den dunkelbraunen Rückstand suspendiert man in Methylenchlorid, filtriert über eine G-3 Umkehrfritte und engt die Lösung auf ca. 10 ml ein. Die chromatographische Aufarbeitung (Mitteldrucksäule 460×26 mm; Kieselgel; CH₂Cl₂; Wasserkühlung) ergibt zuerst eine schmale gelbe, Cp₂Fe enthaltende Zone, dann eine zweite rotbraune Zone, die nicht umgesetztes $[CpFe(CO)_2]_2$ enthält und als dritte braune Fraktion das Reaktionsprodukt 1. Beim Umkristallisieren aus Toluol erhält man 1 in Form von schwarzbraunen Kristallen. 1, $Cp_2Fe_2[\mu_2,\eta^2-S=C(CN)-CH_2-(CH_3)C=S]$, Ausbeute: 220 mg (29% bezogen auf [CpFe(CO)₂]₂. Röntgenographische Daten von 1 siehe Tab. 3; spektroskopische Daten von 1 siehe Tab. 4; Analysendaten von 1 siehe Tab. 5.

3.2. Synthese von 2, 2a und 2b

In einer Photolyseapparatur (falling-film Prinzip) werden 510 mg (2 mmol) η^6 -MesCr(CO)₃ und 1 ml (7 mmol) A in 250 ml THF 3 h bei 0°C bestrahlt. Die anfangs gelbe Lösung färbt sich schnell dunkelrot. Anschließend entfernt man das Lösungsmittel im Ölpumpenvakuum, nimmt den tiefroten öligen Rückstand in *ca*. 10 ml Methylenchlorid auf und chromatographiert über eine Mitteldrucksäule (460 × 26 mm; Kieselgel; n-Hexan/CH₂Cl₂ 1:1; -20°C). Zuerst läßt sich die Ausgangsverbindung (η^6 -Mes)Cr(CO)₃ als gelbe Fraktion eluieren. Danach folgen eine tiefrote langgestreckte Zone (2a), eine orangefarbene Fraktion (2b) und schließlich eine weitere orangerote Fraktion (2). Umkristallisation von 2 aus n-Hexan/Methylenchlorid 3:1 ergibt bei -25° C hellrote Kristalle. 2, (η^{6} -Mes)[η^{2} -(CN)(S'Bu)C=CH₂]Cr(CO)₂, Ausbeute: 170 mg [23% bezogen auf (η^{6} -Mes)Cr(CO)₃]. Röntgenographische Daten von 2 siehe Tab. 3. 2a, (η^{6} -Mes)[S('Bu)-C(CN)=CH₂]Cr(CO₂), Ausbeute: 240 mg [32% bezogen auf (η^{6} -Mes)Cr(CO)₃]. 2b, (η^{6} -Mes)[NC-C(S'Bu)=CH₂]Cr(CO)₂, Ausbeute: 75 mg [10% bezogen auf (η^{6} -Mes)Cr(CO)₃]. Spektroskopische Daten von 2, 2a und 2b: Tab. 4; Analysendaten: Tab. 5.

3.3. Synthese von 3

500 mg (2 mmol) $Cp^*Co(CO)_2$ werden in 250 ml Toluol gelöst und in einer Photolyseapparatur ("falling-film Prinzip") 1 h bei 10°C bestrahlt, bis die Lösung eine dunkelgrüne Farbe angenommen hat. Die Lösung überführt man in einen 500 ml Dreihalskolben, gibt 1 ml (7 mmol) H₂C=C(CN)(S^tBu) (A) hinzu und erhitzt die Mischung 5 Std. unter Rückfluß. Danach zieht man das Solvens im Ölpumpenvakuum ab, löst den rotbraunen öligen Rückstand in ca. 10 ml Methylenchloride und chromatographiert über eine Mitteldrucksäule (460 \times 26 mm; Kieselgel; CH₂Cl₂; Wasserkühlung). Nach der Ausgangsverbindung Cp*Co(CO)₂ wird eine zweite rote Fraktion eluiert. Durch Umkristallisieren aus n-Hexan/CH₂Cl₂ 1:1 erhält man 3 in Form dunkelroter Kristalle. 3, Cp*Co(CO)[η^2 -S=C(CN)- $(CH_2 - {}^{t}Bu)$], Ausbeute: 270 mg (37% bezogen auf $Cp^*Co(CO)_2$). Röntgenographische Daten von 3 siehe Tab. 3; spektroskopische Daten von 3 siehe Tab. 4; Analysendaten: Tab. 5.

3.4. Synthese von 4

670 mg (3 mmol) CpRh(CO)₂ werden in 150 ml absolutem Toluol gelöst, mit 1 ml (7 mmol) A versetzt und 12 Std. unter Rückfluß erhitzt. Nach dem Entfernen des Lösungsmittels im Ölpumpenvakuum, löst man den Rückstand in 50 ml absolutem Methylenchlorid und filtriert über eine G-3 Umkehrfritte. Die rotbraune Lösung wird auf *ca*. 10 ml eingeengt und über eine Mitteldrucksäule chromatographiert (460 × 26 mm; Kieselgel; CH₂Cl₂; Wasserkühlung). Der Komplex 4 wird in einer violetten Zone eluiert. Durch Umkristallisation aus n-Hexan/CH₂Cl₂ 1:1 erhält man analysenreine schwarzviolette Kristalle von 4. 4, Cp₂Rh₂(μ_2 -S^tBu)[μ_2 , η^2 , η^2 -(CH₂=C-CN)], Ausbeute: 150 mg (21% bez. auf CpRh $(CO)_2$). Röntgenographische Daten von 4 siehe Tab. 3; spektroskopische Daten von 4 siehe Tab. 4; Analysendaten: Tab. 5.

Dank

Diese Arbeiten wurden von der Deutschen Forschungsgemeinschaft (SFB 247) sowie vom Fond der chemischen Industrie unterstützt.

Literatur

- 1 L. Stella, Z. Janousek, R. Merényi und H. G. Viehe, Angew. Chem., 90 (1978) 741; Angew. Chem., Int. Ed. Engl., 17 (1978) 691.
- 2 H. G. Viehe, R. Merényi, L. Stella und Z. Janousek, Angew. Chem., 91 (1979) 982; Angew. Chem., Int. Ed. Engl., 18 (1979) 917.
- 3 H. G. Viehe, Z. Janousek, R. Merényi und L. Stella, Acc. Chem. Res., 18 (1985) 148.
- 4 N. De Kimpe, R. Verhé, L. De Buyck und N. Schamp, Chem. Ber., 116 (1983) 3846.
- 5 T. G. Southern, U. Ohmischen, J. Y. Le Marouille, H. Le Bozec, D. Grandjean und P. H. Dixneuf, *Inorg. Chem.*, 19 (1980) 2976.
- 6 T. Kojima und T. Nishikawa, J. Phys. Soc. Jpn., 12 (1957) 680.
- 7 A. Terzis und R. Rivest, *Inorg. Chem.*, 12 (1973) 2134; R. A. Schunn, C. J. Fritchie und C. T. Prewitt Jr., *Inorg. Chem.*, 5 (1966) 892.
- 8 S. Lotz, P. H. van Rooyen und M. M. van Dyk, Organometallics, 6 (1987) 499; N. S. Namtkin, B. I. Kolobkov, V. D. Tyarin, A. N. Muratov, M. Mavlonov, A. Y. Sideridu, G. G. Aleksandrov, A. V. Lebedev, M. T. Tashev und H. B. Dustov, J. Organomet. Chem., 276 (1984) 393; G. J. Krüger, S. Lotz, L. Linford, M. van Dyk und H. G. Raubenheimer, J. Organomet. Chem., 280 (1985) 241; G. le Borgne, D. Grandjean, R. Mathieu und R. Poilblanc, J. Organomet. Chem., 131 (1977) 429; H. Umland und U. Behrens, J. Organomet. Chem., 273 (1983) C39.
- 9 H. A. Bent, Chem. Rev., 61 (1961) 275.
- 10 H. Werner, K. Leonhard und Ch. Burschka, J. Organomet. Chem., 160 (1978) 298.
- 11 G. A. Olah, Science, 168 (1970) 1298; G. A. Olah, P. W. Westermann und J. Nishimura, J. Am. Chem. Soc., 96 (1974) 3548.
- 12 R. S. Dickson, G. D. Fallon, R. J. Nesbit und H. Perteras, Organometallics, 6 (1987) 2517.
- 13 J. A. E. Gibson and M. Cowie, Organometallics, 3 (1984) 722.
- 14 L. Pauling, *Die Natur der chemischen Bindung*, 2. Nachdruck der 3. verb. Auflage, Verlag Chemie, Weinheim, 1976, S. 227.
- 15 M. M. Mickiewitz, C. L. Raston, A. H. White und S. B. Wild, Aust. J. Chem., 30 (1977) 1685; D. F. Shriver, The Manipulation of Air Sensitive Compounds, McGraw-Hill, New York, 1969.
- 16 Eine Abbildung der Apparatur befindet sich in: G. Brauer (Hrsg.), Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 1981, 1807.